Why so many big lines into terrible restaurants…

It must be a good restaurant since the line is so long. Hm… you are likely just failed to update your beliefs in a rational way.

Imagine you are in a classroom and there is an urn with three balls in front of everyone. You don’t see the colour of balls, but you do know equally likely it could be majority blue (2 blue 1 red) or majority red (1 blue 2 red). Since you don’t know which urn exactly is there (true state of the world) you need some evidence before making a guess. Now every person in class one by one come and pick one ball from the urn and without showing it announces his choice. Believe it or not, but this is your restaurant choice situation.

Two possibilities for the urn is an analogue to whether this restaurant good or bad. A person that comes to make a choice has several pieces of information to combine. Taking one ball from urn is the same as if you have read some review about the restaurant before. The information is not perfect, the reviews could be biased or not representative for your taste. However, you also observed the choices of people before you. You do not know their private signal (what ball they picked from urn, i.e. what was their conclusion after studying the restaurant reviews), but you do know their choices.

Claiming that the restaurant must be good because the line is long would be true only if all people that come sequentially followed only their private signals. Then when your time has come to make a choice the line indicates independent draws of balls from the urn. If it the true state of the world was that the urn is majority blue you would have much more people that say so.

The thing is that those draws are clearly not independent. At some point, a person that has a private signal that states the urn is majority blue might see too many people choosing majority red and he will abandon his private signal and follow the crowd. So that when it is your turn to make a choice and you observe a line (i.e. heaps of people claiming their choice) it does not necessarily mean that the restaurant is good. Put differently, you do not account for correlation of public beliefs (a belief based on the observed choice before seeing your private signal) and private signals.

Well that is herding. And here is a presentation about it….

If that stuff sounded crazy awesome then read this and in the very very end this

It is obviously not about restaurants at all, it could be a choice of major for a college degree. Is being a doctor a good choice or not? There is no way to know for sure, you just have to combine your private signal with the public belief. If you don’t have a strong private belief, then it will be overwhelmed by the public belief and you just follow the crowd. It also could explain why in Russia or Germany during good times aaalll people would put out Nazi flags outside or put Stalin’s portrait on the wall at home and office. Or pretty much anything that involves guessing the state of the world by combining information from your guess and choices of others.

A practical advice on non-parametric density estimation.

Always start from the histogram, any non-parametric density estimation methods are essentially fancier versions of a histogram.

Compare the problem of choosing and optimal size of bins in histogram with choice of h in kernel estimator

The number of bins is too small. Important features, such as mode, of this distribution are not revealed
The number of bins is too small. Important features, such as
mode, of this distribution are not revealed
Optimal number of bins (Optimal according to Sturges' rule, but the rule is besides the point)
Optimal number of bins (Optimal according to Sturges’ rule, but the rule is besides the point)
The number of bins is too large. The distribution is overtted.

The point of the exercise is to reveal all features of data; and that what important to keep in mind.

The bandwidth h is too large. Local features of this distribution are not revealed
The bandwidth h is too large. Local features of this distribution
are not revealed
The bandwidth h is selected by a rule-of-thumb called normal reference bandwidth
The bandwidth h is selected by a rule-of-thumb called normal
reference bandwidth
The bandwidth h is too small. The distribution is overtted.
The bandwidth h is too small. The distribution is overfitted.



While histogram takes an average within a bin, kernel estimation naturally extends this idea and takes a fancier version of average around given point. How much info around a point to use is governed by the bandwidth. Conceptually a bandwidth and a bin are identical.


And now take a look at a perfect application of the idea in

Nissanov, Zoya, and Maria Grazia Pittau. “Measuring changes in the Russian middle class between 1992 and 2008: a nonparametric distributional analysis.” Empirical Economics 50.2 (2016): 503-530.

Comparison between income distributions in the period 1992–2008. Authors’ calculation on weighted household income data from RLMS. Kernel density estimates are obtained using adaptive bandwidth
Comparison between income distributions in the period 1992–2008. Authors’ calculation on
weighted household income data from RLMS. Kernel density estimates are obtained using adaptive bandwidth

Going back to advice: keep in mind that you doing it to reveal features of data and it has to be strictly more informative than a histogram, otherwise the computational costs are not justified.

Spatial competition… and what science is really about.

Check my presentation on an empirical model of firm entry with endogenous product-type choices. (here)

A normal reaction to the presentation’s topic should be “whaat? why would anyone want to do this stuff for a living?”. It is a great question, I don’t have an answer to it. It is indeed viciously technical and deadly boring.

But I do have something really cool to share. Back home I was driving my 15-year-old niece to a museum and failed to find a humanly understandable combination of words to explain what science is. So now you check this combination of words, I think it is a really cool fit….

A human eye is able to capture a quite limited portion of light wave spectrum (Visible spectrum). We are unable to travel in time or reach most of the planets in the galaxy. Yet there is no need to be able to physically see the whole light wave spectrum to actually “see” it. And you do not need to be able to travel in time to “see” the past, just like you do not need to be able to travel to another planet to “see” that planet. Here is a cool angel on it. An information integration theory of consciousness, an exceptionally creative idea that, if appreciated properly, will blow your mind.

Human bodies have an enormous amount of systems like no other living being. We feel temperature, objects, we see and hear, feel emotions like fear, shame, happiness etc.. Our brain integrates all of this information from all the systems into a sense of reality. Put differently the reality as seen by a person is but an aggregated sensations from a set of systems, which continuously register information. Think about a feeling of pain. Pain is your body’s language. If your body needs attention from you, it sends a signal. However, the signal has only one dimension, it is kind of like a baby cry. Baby can only change the intensity of a cry but it is your job to give to this cry an interpretation. Your brain does the same. (To be more precise you do it yourself but unconsciously, it is one of that automatic processe, kinda like intuition) A conscience, or a capacity to separate yourself from other things, is just another trick of your brain. Instead of giving you a row information from systems that systematically aggregate information it gives you interpretation. Instead of overwhelming you with tonnes of sensations brain gives you a meaning of them. The reality is a brain’s interpretation of the aggregation of information from a number of systems that supply raw data.

Holy bologna!! But is it not what science is? Yes, indeed. Science is nothing but a natural extension of a process that your body does almost automatically. Aggregating information from systems that continuously register information and assign meaning to them (there is also this thesis that mathematics is nothing but common sense, a quite dense at times. I’ll see if I can make this post compact and readable enough if I do I’ll give you that idea as well)

It is also interesting to look at people’s temperaments. The system integrator (our brain, our consciousness) assigns different weights to different system’s from which it gets information. That’s why sometimes we observe people who are always scared or calm, sympathetic or cold. Of course, there are other things that define character, or predilection to specific kinds of decisions, such as upbringing and genetics, yet the system integrator has the last word.

Ok. Your brain has the capacity to integrate information from systems that systematically aggregate information and assign meaning, one of a product of this process is a conscience or a sense of reality. But the systems do not have to physiological, they do not necessarily have to be attached to your brain through common nerve system. It just has to be something that contains information. Let’s go back to the very beginning of this post. Yes indeed people see a quite narrow spectrum of the lightwave, however, there are devices which can capture those waves. Cameras, for example, continuously aggregate information. It would never have been done if we limited ourselves to physiological systems. However, for your brain information which is captured by the camera will have the same value as the information captured by your eyes. The only difference is that your brain will have to readjust itself to be able to aggregate information from it. And that is why in the beginning when you look at some figure which contains information you will be confused but with time you have to realign the integration process. In other words, you have to be able to incorporate this new information and combine it with information from other systems. When you do mathematics it’s very important at some point to stop and think what is the meaning of the equations that you have. You have to integrate this information with other information that your brain has and assign meaning to it. That is, in fact, a process of co-integration of information from different sources. And it is very costly for your brain to do, that is why it is so annoying. Another example from the beginning is our incapacity to travel across time. Well, the physical world, unfortunately, has this dimension which only goes one way and the speed of this going can not normally be changed. But all of us has some videotapes from the past. Imagine that there is a probe that is able to capture some information from the past and keep it (picture, videotape, documentary movies). Some system even allows us to travel through time and for our brain this is identical to if we were to travel in past ourselves. You just have to put in some effort to integrate the information from new systems. People who study history or work on documentary movies emerge themselves with systems that continuously register information from the past and their brain is trained well enough to easily incorporate this knowledge and assign a meaning to it. Another example is that to get the information about faraway planets one does not have to physically travel there, astronomical spectroscopy allows to systematically capture the information about the planets and then you can realign this knowledge so that your brain would incorporate and integrate into a perception of reality just like it would do from your eyes. And the final example is a statistical work. So if you have some data sets you can do some statistics to make some conclusions. But most often to do some statistical work a person has to merge two data sets. If those two different data sets are nothing but systems that continuously capture the information about some object. Put differently there are two independent systems that continuously register information about some object (it is other people that put down a number, in theory instead of a number they could have used words, but then we are back to crying baby case, the signal is not rich enough). They look at the same place and what people can do the camp combine this knowledge to assign some meaning to eat.

The point is our brain is capable to aggregate information from many many systems that supply information than physiological limits dictate.

In some sense, our brain is a prisoner of our physiological systems. So one way to say is science is setting your brain free. Seeing and thinking are the same thing when your eyes are closed. Put different things that we physically see here or feel is just a little fraction of what we potentially can see if we allow our brain to aggregate information and assign meanings from much wider systems that continuously register information. The sense of reality, conscience, is a computational shortcut. Because otherwise your brain would be overwhelmed with information.

In fact, any meaning is a computational shortcut that only your brain requires. The objective reality exists as an enormous mostly meaningless set of data. Life exists only because it can, asking for the meaning of life is the most idiotic question of all. Meaning itself is senseless it is nothing but a trick of your brain to aggregate information easier (It sounds really weird… hm… I probably should wrap up with this one, better do another post).

P.S. To survive people developed a capacity to form groups very quickly (morality) and to make decisions in uncertainty very quickly. A sense of reality, or consciousness, is sort of a “sufficient statistics”. For the decision at hand (to survive) we can form one parameter, a meaning, that would contain all useful information from the data that surround us. It economized on computational requirements and minimizes the risk of a mistake (sometimes a cost of a mistake is your life)


The key difference between developed and undeveloped countries

To overcome its physical vulnerability ants developed a unique way to navigate in uncertainty. The chemical trace allows to an ant and all his bodies to find a way from food to home (it is very close to how people use market prices to send information. A pencil example by Friedman). Spiders have developed the web to catch insects the same size as spiders themselves (morality is an evolved part of human nature, much like a tendency to weave nets is an evolved part of spiders’ nature. See figures with “gossiping” here). What’s so special about humans? There no better way to demonstrate than with a movie Allied. What do you choose an allegiance to your family or your country? The choice evokes a range of thoughts, feelings, emotions, and intuitions about what to do, what is the right thing to do, what one ought to do—what is the moral thing to do. Nobody except humans possesses morality, but why over million years of evolution nature decided to develop such a peculiar attribute? Morality is what makes people come together and play non-zero-sum games, it was evolutionary necessitated device that ensured the survival. The feeling of “right” and “wrong”, “good” and “bad” is nothing but your brain figuring out how to act in groups and use groups to its advantage. (Next time when you go to the park and see many groups of people keep in mind that this is happening because an action of cooperating is remunerated with oxytocin (brain uses hormones like carrot and stick to incentive a particular form of behaviour, the one that proved to increase the chances of survival))

What are these moral thoughts and feelings, where do they come from, how do they work, and what are they for? There is a scientific answer to these questions. It is possible to use the mathematical theory of cooperation—the theory of nonzero-sum games—to transform this commonplace observation into a precise and comprehensive theory, capable of making specific testable predictions about the nature of morality. (Curry 2016)

A little experiment called Public Good Game (aka n-player prisoners dilemma; Imagine you have a baby and you and your partner have to do something very important for themselves so that each would like the other one to sit with the baby. But if both bail on sitting with baby… then we both suffer because the little one might fall, choke or something. It is individually rational to defect in providing the public good and “free-ride”. If there are many players – it makes it a Public Good Game) captured a feature that is unique to the animal world – “reciprocal altruism”. People trust to the strangers if they see that they are eager to cooperate. Only humans possess this.

This feature manifests itself in technologies of trust (exchange and reciprocity) such as money, written contracts, ‘mechanical cheater detectors’ such as ‘[c]ash register tapes, punch clocks, train tickets, receipts, accounting ledgers’, handcuffs, prisons, electric chairs, CCTV, branding of criminals, and criminal records. And this very feature allows humans to create social structures such as markets, political elections and …states. People had money, laws and elections way before political science and economics had anything to say about it. All these social structures, markets, elections and states themselves allow strangers – not genetically related species – to beneficially coexist.

Ok, but what is has to do with the key difference between developed and underdeveloped countries? Well, everything.

The developing countries are simply unable to form social structures effectively. They can not fairly elect political leaders, they can not maintain market economy without terrible abuses that potentially come with market economies. If people generally do not follow laws, a country practically does not have any laws. Financial technologies are a pure manifestation of “reciprocal altruism”, where the complexity and richness of financial instruments are based on nothing but a piece of paper that has power only if people trust it. The problem of developed countries is that people in these countries are unable to cooperate effectively. They are unable to play a zero-sum game. In the US strangers came together and created iPhone, in Russia, people fail to organise themselves into homeowner associations (another interesting example is how Russians treat national currency, everybody ditches it whenever the opportunity arises, that leads to volatility and self-fulfilled prophecy that currency had to be ditched). In general, the breakdown of cooperation in such games as Public Good Game or Minimum Effort Game are called coordination failure.

What is curious is that playing non-zero-sum games is a natural evolutionary developed tendency in any human. In the absence of interference, people will eventually form an effective cooperation. They will come up with the sets of rules and believes that will allow for an effective non-zero-sum game. My favourite example is a lovely place called Russia, where the government does practically everything possible to break down the effective cooperation by systematically taking actions that induce the negative beliefs.

Hm… I have started the post with morality. Morality is what makes you feel like punishing defectors in Public Good Game (you say “this is wrong”) and makes you contribute if everyone else contributes (you say “I feel bad by not doing the right thing”) or makes you feel offended if you contribute but most did not (You say “I feel like an idiot by doing this”). All people say these things in their head and that what makes them come together and do a great thing. Or, if you leave in some underdeveloped country, never do anything great.

Some reports that I need on this topic 1, 2

 P.S. Check this awesome quotation from here:

Cooperation depends on trust, which in turn requires evaluating individuals and groups as potential cooperation partners. Oxytocin, a neuropeptide known for its role in social attachment and affiliation in mammals appears to be important for both kinds of decisions. Intranasal administration of oxytocin increases investment in a “trust game”, but also biases judgment and behavior toward ingroup members and against outgroup members. Likewise, genetic variants associated with oxytocin are associated with increased prosocial behavior, particularly when the world is seen as threatening. From an evolutionary perspective, the double-edged sword of human morality comes as no surprise. Morality evolved, not as device for universal cooperation, but as a competitive weapon, as a system for turning Me into Us, which in turn enables Us to outcompete Them. Morality’s dark, tribalistic side is powerful, but there’s no reason why it must prevail. The flexible thinking enabled by our enlarged prefrontal cortices may enable us to retain the best of our moral impulses while transcending their inherent limitations.

How to catch the market collusion using a bit of algebra and public data

A little report on a paper about a collision in the electricity market in the UK.

In the late 1990s, the combination of game theory and econometrics produced new techniques for collision detection. The advantage of this technique is that you just need readily available public data and few simple equations that reasonably captures firms behaviour.

The big picture is that if you know the costs of the firm you can already tell if the prices are way too high.

Some other examples of this approach: 1, 2.

Papers are essentially identical. This new technique is used and then the results compared with more conventional methods, e.g. using cross market variations (by definition require way more data). The bottom line is that this technique works. Hurray.

… and a little aside as per usually. A market is only one case of a social structure where strangers interact, there are many others, e.g. elections, law enforcement. (these social structures are all trust-based technologies, trusting to a stranger, or a piece of paper, is a unique evolutionary feature that observed exclusively in people. It allows us to play non-zero-sum games (cooperate, build states and stuff) and kick butts even if we are physically weaker than most predators in the animal world) What’s nice about markets is that inhere things are sort of black and white, everyone knows what they are doing. Yet, almost any concept that has been designed to capture interaction in a market can be generalised to any other social structure. Few examples. An idea of being small so that you take environment as given, like in, you can’t do anything about it. When you vote for president your single vote is indeed very small to influence the outcome, when you vote within the local community, though, your vote matters a lot and environment is not exogenous at all. An idea of elasticity transcends directly to, for example, the relationship between men and women. If the market is inelastic then you can abuse it. Just like you can abuse a woman that doesn’t have anywhere to go (cool kinda related paper). Yet if there are many more “men” among which a “woman” can choose from then market becomes very elastic and one cannot abuse. Indeed, a lot that happens in the market can be generalised to any other social structure.

Blackandwhiteness of market comes from the fact that everybody kinda aware what game is being played. The problem with other social structures is that people don’t really know what game they really playing. (Crooked politicians, for example, will do everything they can to make sure that people are clueless what they are actually choosing among)  Peoples’ minds have (another evolutionarily developed feature that allows people to form groups) morality that plays a very very important role in social structures, i.e. the notions of right and wrong and their boundaries (more technically they affect believes whether your “high” effort will be supported by other and not taken advantage of). Think about a country where it is customary for men to have way more rights at the expense of the rights of women, it would be very typical to see that women, in fact, are happy to give those rights to men, because they truly believe that their place is in the kitchen or at the lower paid job or something like that. Put differently, social norms very often prevent players from realising what game exactly is being played. Markets in this sense away less “contaminated” by those social norms, yet they are still very much affected. General notions of right and wrong play important roles in market, just like they do in any other social structures. (check this experiment that says that economists are more “rational” (read selfish)) American culture of winner takes it all leads to very aggressive corner solutions by the corporate world, naturally, to offset those the US has a very strong regulatory body.

Think Russians before the 1990s didn’t have any market experience. And when the markets were introduced after the 1990s rules were taken quite literally. Of course, there was a lot of influence of, so-called, market fundamentalists from IMF, which reinforced this idea that since this is capitalism and this is markets you can do everything which is not directly prohibited and even if this prohibited it is in the rules of the game to break the rules if you can.

Теория аукционов в действии

Мой доклад про применение теории аукционов в энергосетях.

Когда я первый раз услышала про аукционы и про теорию ауцкионов, я был уверен что это самая скучная вещь в мире. Любой нормальный человек должен именно так на это реагировать. Ну как обычно бывает в математике все эти странные символы и странные термины скрываю за собой невероятно увлекательные истории которые касаются всех нас. Теория аукционов это очень логичное продолжение моделей рыночного частного и общего равновесия. Базовая история, которая скрывается за символами и терминами остается тоже: как распределить ресурсы так чтобы они достались тому кому больше всех нужно. Решение проблемы энергобезопасности это очень сложная инженерная проблема и во всех развитых странах применяется междисциплинарный подход. Большую часть этой междисциплинарности занимает именно теория игры, а точнее аукционы. Блин, я хотел рассказать какую-то большую историю, но понимаю, что мне очень не хочется это делать и я расскажу просто очень примитивный пример и дам пару ссылок. Ну вот когда строят дороги очень важно учитывать в размазанность её загрузки, а не просто средние значения. Ты можешь построить дорогу на 10 полос но она будет использоваться 10 минут в день. Если же одна полоса там будет то будут сильные пробки. Дорога из пункта А в пункт Б она должна учитывать тот факт что будут всплески спроса на эту дорогу. Ну и вообще очень разумно разделить проблему пробок на дорогах на проблемы стороны спроса и проблемы стороны предложения. Самый поверхностный подход это сосредоточиться на стороне предложения. Сказать проблема пробок только в том что у нас не достаточно широкие дороги. Но проблема будет в том что если построить дорогу чтобы вообще пробок не было, но она будет пустая 99% времени в течении дня. Потому, что она будет использоваться только 1% времени. И будет стоять очень дорогая и красивая никому не нужная дорога. Самый лучший способ это учитывать и средние значения и вариации, теоретически оптимальный вариант это когда загрузка на дорогу будет равномерно в течение дня. Этот оптимум вряд ли достижим потому что мы договорились работать начиная с 9 или там с 10 и в это время примерно начинается массовый спрос на дороге и дорог не хватает.
Ну в общем было бы здорово если бы все могли договориться и распределить дорогу и таким образом чтобы люди, к примеру, менее важнее ехали в другое время суток. Ну и вот тут мы как раз используем такую вещь как цену на которую люди реагируют чтобы принимать решения. Возвращаясь к теме энергобезопасности, там вообще много проблем, но одна из центральных это ограниченность ресурсов по трансмиссии электричества как раз из-за вот внутридневная волатильность. Теория аукционов как раз говорит о том что мы должны сделать электричество дорогим когда пик и дешевым когда спроса нет и все. Кто-то будет реагировать на этот стимулы исп,ользовать электричество тогда, когда нет пикает. Ну вот и всё мы используем различные механизмы, чтобы адресовать сторону спроса, может даже сторону предложения меня не надо.

Вот крутые сайты профов, которые занимаются дизайном рынков:

Al RothPeter Cramton

Вот список мудро подобранных статей по дизайну рынков:

Вот статьи, которые я юзал для доклада

1, 2, 3

How to estimate the demand for differentiated products, when you have macro and/or micro data.

The only difference between machine learning and good old econometrics is the area of application. Econemetricians try to predict the past, e.g. explain what was the reason for this or that level of salary, or gdp. That’s why they worry about standard errors and distribution of estimators in the limit. Machine learners mostly concerned about the point estimate rather than a confidence interval. The funny thing is that machine learning and econometrics are the same things. This is good old mathematical statistics which is called differently. Machine learning is a reduced form estimation sent to the limit. A century ago there were no computers and most of the machine learning techniques were not available; the best the statisticians could do was ordinary least squares because estimators have closed form solution and tractable limiting distributional behaviour. The solutions required ingenuity and fundamental understanding of mathematics.

Hm… I have gone astray a little bit. The point which I was trying to make in this post is that just like Star Track incorporate that some geeky stuff about theoretical physics into popular culture, social networking incorporated machine learning, or econometrics, into popular culture. An average Joe became informed about things that can be done once you know some mathematical statistics. However, what an average Joe doesn’t know is that there is a competing concept that allows doing the same thing and it is called structural estimations. McFadden  got a Nobel price for pioneering this field. The idea here is that you think explicitly how the data was generated. It is closely related to an idea of sufficiency in statistics. One does not need to know the data about the whole population to make conclusions, a random sample from this population is enough. A random sample from a population is an example of a sufficient statistic i.e. there is already enough information for the analysis. Structural estimations do the same thing; we have the data but maybe it is not random, or maybe something that we need to control for is missing, but it is good enough if we bring some outside knowledge about this data.

The paper that I have presented the other day is about how the demand can be predicted if one has data, potentially very limited amount of it. It could be a great alternative to machine learning for dating services, for example.

A presentation about BLP (1995,2004)

How to proxy for unobserved productivity shock for estimating a production function.

How to estimate production function by looking at the output, labour and capital only? Normally it is impossible, capital and labor does not work on its own to produce the output, there are managers with skills and connections, so simple projection of output into the column space of labor and capital would be terribly misleading, i.e. the estimates would pick up an effect of a missing variable, and any prediction exercises would not be very meaningful.

Well, still you can do a lot, by thinking explicitly about how the data was generated. It was generated by dynamically optimising firms and economists now a lot about how a rational firm behaves, and this knowledge allows us to control for unobservables. The presentation of a method developt by ACF summarized this approach.



k-level, игры класса beauty constest

Доклад, который я делал недавно. Он про то как экпериментально показали процесс снижения эффективности если выгодно быть быстрее всех.

В супермаркетах на выходных очень часто люди садятся в лифт даже если он идёт не в ту сторону куда людям надо. Они это делают потому что они боятся не попасть в него. Или, к примеру, люди во время пробок приезжают перекресток и тем самым перегораживают проезд людям из перпендикулярного движения, что создает еще большие пробки. Это происходит, потому что есть преимущество сделать что-то быстрее другого человека. Если ты сядешь в лифт быстрее, то ты точно выиграешь я не будет так ,что в лифте не места. На светофорах очень часто если ты не проедешь светофор, то человека из перпендикулярна движения займёт место в которое ты мог попасть. Это очень общее наблюдение и очень хорошо изученно в экономике и всегда, когда время транзакции имеет значения, рынок или любая другая социальная структура начнет терять свою эффективность или рушится.

Нобелевский Лауреат Росс по экономике потратил всю свою жизнь, чтобы изучать эту проблему и он применил так называемые алгоритм отложенного принятия. Самое большое его прикладное достижения является налаживание работы рынка медицинских выпускников. Со временем в Америке сложилась ситуация, что больницы начали предлагать выпускникам медицинских ВУЗов свои позиции уже на первом курсе. Больницам очень нужно было заполнять вакансии – не занятые места приносят большие затраты. Но проблема такого подхода что ты не можешь дифференциал студентов еще на первом курсе, образуются нестабильные связи, то есть после спаривания и больница и студент хотят быть в другой паре. Росс нашел статью из 60ых годов по математике где для развлечения пару математиков решили проблему нахождения идельных пар для брака в небольшой деревне. В этой статье Росс приводи десятки примеров как индивидульная рациональность действовать быстрее разрушает рынки. Вот такой глупый примера, то что в экономике очень много людей, которые молодые профессора, но на мой взгляд это плохо, потому что эти люди пока не очень понимают объект изучения, в экономике главный объект изучения это социальные феномены, чтобы различать их, тебе нужен жизненный опыт, это очень сильно отличается от других наук таких как физика или математика (мы, как общество, поощряем это).

Росс в своей статье, конечно же, говорит о более нормальных вещах, к примеру, мировой рынок трансферов футболистов страдает из-за того, что футбольным клубом выгодно заключать сделки как можно скорее. Забавно что об этом Кейнс ещё сказал в 36 году. Он сравнил поведение инвесторов на рынке как будто бы это конкурс красоты. Идея в том что инвесторы пытаются продать акцию когда она на пике, то есть им нужно продать сразу как только все начнут скидывать акции. Каждый инвестор думает что думают другие в в теории игр это называется размышления уровня К. Есть целый класс игр которые моделируют как раз этот процесс как рынок начинает портиться. В России, к сожалению, вот об этих вещей ничего еще не извество и это приводит к тому что огромное количество проблем которые мира уже решил в России всё ещё остаются. Аллокация студентов по школом, детей по детсадам это все уже решено и известно как решать. (Классное чтиво про Deferred acceptance algorithms)

Интервью для ВШМ. Полная версия. 

Редактированная опубликованная версия

Продолжая общение с необыкновенными выпускниками ВШМ СПбГУ в рамках проекта GSOM Family, мы встретились с Сергеем Алексеевым – молодым ученым, получающим докторскую степень PhD по экономике в Техническом университете сиднея (UTS). Сергей закончил нашу бизнес-школу в недавнем 2009 году, успел получить две магистерские степени в Петербурге и Канаде, и даже год проработать лектором в ВШМ СПбГУ.

О пользе научной деятельности, глобальной мобильности и карьерном пути исследователей, а также о своих нестандартных исследованиях в области теории игр Сергей рассказал нам в специальном интервью.

Когда говорят о карьере, в первую очередь вспоминают корпорации или собственный бизнес, почему ты выбрал исследования?

Не знаю! Что я думаю? Мне просто было интересно. И все. Я с детства был очень любознательным. Родители рассказывали, что я ломал игрушки в детстве, чтобы посмотреть, из чего они состояли. Мне действительно было просто любопытно. После окончания бакалавриата ВШМ я поступил в магистратуру ФИНЭКа (сейчас – СПбГЭУ). Я учился на программе двойного диплома по корпоративным финансам с университетом Дофина. Нам читали иностранные профессора, французы, итальянцы, которые стали для меня ролевой моделью исследователей. Именно тогда я понял, что можно заниматься наукой и просто любить то, что ты делаешь. И жить нормально.

Зарубежные исследователи – какие они? Увлеченные своим делом профессионалы?

Это очень разные люди с очень разными мотивами. Они настолько разные, что усреднить невозможно. Есть люди, которые просто прячутся в университетах, потому что не хотят идти работать, есть люди, которым комфортно в университетах, а есть очень умные люди, которым это просто легко дается (всегда легко давалось), они учились на пятерки и это был их естественный выбор. Опять же если мы рассматриваем Австралию или Америку, то очень много студентов там приезжают из развивающихся стран; они просто хотят остаться и закрепиться.

Как можно делать исследования и что-то изучать, например, в сфере менеджмента или финансов, фактически не работая в индустрии? Особенно, когда люди начинают заниматься научными исследованиями сразу после окончания университета?

Наверное, это менее нормально в менеджменте, но это абсолютно нормально в экономике. Я объясняю это обычно следующим образом. Если мы возьмем какую-то хорошую статью по экономике, то станет понятно, что очень часто она ни имеет никакого приложения и никак мир лучше не сделает. Конечно же есть направления, которые напрямую направлены на решение прикладной задачи. К примеру, такие направления в экономике как экономика общественного сектора или дизайн рынков. Там изначально вопрос стоит прикладной. Но в подавляющем большинстве ты увидишь, что они почти все имеют относительно низкую прикладную ценность.

Все эти работы должны удовлетворять одному критерию – они должны быть красивые. Это должно быть красивое доказательство теории, какой-то необычный взгляд на какой-то феномен, какая-то невероятно интересная стратегия по идентификации этого феномена. В этом смысле научная деятельность не отличается от деятельности музыканта, идея лишь в том, что эту «музыку» могут понять только люди, которые прошли «тренировку». В каком-то смысле ты можешь сказать, что смотришь на квадрат Малевича, и для обычного человека это просто квадрат, достаточно бессмысленный, а для человека, который понимает кубизм, ясно, что художник вложил глубокий смысл, что-то очень сильное, эмоциональное. На мой личный взгляд, значительная часть научной деятельность обществу реально не нужна. Не знаю, как в ВШМ смотрят на это, но все вот эти статьи, которые пишут математики, физики… Зачем нужен театр миру? Это просто красиво.

Что изучают сегодня в экономической теории?

После окончания ФИНЭКа я понял, что хочу получить PhD по экономике. Помню, как листал тогда статьи по менеджменту, и осознал, что не могу заниматься этим: в менеджменте великие умы на полном серьезе обсуждают какие-то логистические цепи, цепочки ценностей, стратегический менеджмент. Обычно там лишь несколько идей, которые они крутят и называют по-разному. Может я не прав, но это точно утомляет. А экономисты…

Например, бросая камень, ты говоришь, что камень упадет на пол, потому что знаешь, что действует сила тяготения, и понимаешь, что этот исход генерируется какой-то моделью. И также любой социальный феномен генерируется какой-то моделью. Экономисты берут социальные феномены и пытаются понять, что их генерируют и формализуют эти закономерности. В целом это характерно для любой науке. Мы всегда пытаемся умом пощупать что-то, что создает, то, что мы видим. Любопытно, что юристы используют эму логику в обратном направлении: то есть преступление, то есть исход, вложить в какую-то статью. Та же идея только наоборот. Или же врачи, наблюдая какой-нибудь анализ крови с отклонениями, смотрят на него как исход некой болезни, которую надо умозреть.

Другими словами, любая наука пытается понять мир через логику другого уровня. И на самом не обязательно быть ученым, чтобы этим заниматься. Это просто так работает наш мозг. Он любит упаковывать явления в классы, генерируемые чем-то что стоит на одну логическую ступень выше. Даже официантка в кафе предпримет попытку объяснить почему кто-то не дал её чаевые – скажет, что человек жадина. То есть она будет пытаться объяснить наблюдаемый исход фундаментальным качеством объекта, который этот исход генерирует. И это очень интуитивно. В общем-то идея гороскопа, в этом смысле, очень научная, но не подтверждена эмпирически. Также, как и вера в бога, очень людям нравится верить что обозреваемое генерируется чем-то что все связывает, но опять же, к сожалению, никто не сумел убедительно эмпирически подтвердить теологию. Хотя идея, конечно, красивая.

Возвращаясь к экономике интересно упомянуть, к примеру, последнего ученого, который получил Нобелевскую премию по экономике Хольмстрём. Теория игр насобирала такое количество удивительно умных теорий и математических конструкций за последние 50 лет, что сегодня уже есть возможность моделировать действия агента в организациях, у которого есть несколько задач и как этот агент распределяет между ними усилия в зависимости от стимулирующих сил. Это очень очень тонкая работа для математиков ну как следствие для человеческого ума. Базовая идея очень простая, это естественная обобщение принципал агентской модели: ее поймет социолог или историк, но формализовать ее очень сложно. И вот сегодняшнее поколение математиков, которые занимаются теорией игр уже умеют моделироваться такие очень тонкие вещи. Кстати, говоря, я возможно буду писать статью на эту тему. В общем, чтобы обобщить – экономика занимается формализацией социальных феноменов.

То есть это все про изучение мира?

Да, все верно. Вообще экономистов можно разделить на две группы: ученые (scientists), которые пытаются понять мир, и инженеры (engineers), которые пытаются сделать его лучше.

В теории игр есть ветвь «дизайн рынков», где пытаются «собрать» рынок. Например, рассмотрим историю с донорскими почками. На почки существует очень высокий спрос, но мы не можем ими торговать, потому что это безнравственно. Фактически эта сила нравственности закрывает рынок. Есть алгоритмы, которые позволяют имитировать рыночные механизмы без рынка.

Мой департамент занимается как раз теорией игр. Теория игр – это изучение оптимального поведения человека в определенной среде. Дизайн рынков (market design) называют теорией игр наоборот. Мы знаем оптимальное поведение человека, и нам нужно выяснить, какую среду необходимо создать для человека, чтобы он себя вел соответствующим образом. Теория игр исходит из того, что среда экзогенна, дизайн рынков – из обратного.

Поделись, как удалось поступить на программу PhD и к тому же получить хорошую стипендию?

До получения стипендия в моей жизни был один очень важный шаг. Это было моим стратегическим решением, но тогда я не ожидал, что оно будет иметь столь длительный эффект. Закончив ФИНЭК, я решил начать экономическое образование с получения магистерской степени по экономике. Сдав множество тестов, я получил стипендию университета Йорк, где проучился год. Эта поездка была для меня очень сложной и интенсивной, насыщенной учебой. На этой программе было гораздо больше математики, чем я когда-либо за всю свою жизнь видел: это была чисто экономическая магистерская программа. В моем расписании не было того, что мы так любим – управления цепями поставок, маркетинга, стратегического менеджмента… Главным инструментом была математика, а не слово.

Для получения степени PhD я выбрал Австралию, потому что у них была хорошая программа, к тому же была возможность посмотреть места вокруг. Хотя уже тогда я понимал, что заниматься PhD по экономике можно хоть в лесу; учебник прочитать и написать статью. В этом красота экономической деятельности: здесь тебе не нужно нравиться коллегам и начальнику, не нужно играть в нечестные игры, учитывать все неформальные правила. В академической деятельности у тебя есть вебсайт, где ты выкладываешь все свои «песни», которые «поешь». Если у тебя есть, что сказать, ты можешь это сделать. В этом смысле PhD программы – это просто возможность освоить метод. Что тебе петь, ты выбираешь сам.

Я был в Петербурге и понимал, что могу поступить на PhD по экономике в любой части мира. Рынок PhD глобален. Типично, что, получив PhD в Австралии, при наличии хороших статей можно устроиться куда угодно. Обычно ты выбираешь одно самую сильную статью, написанную в рамках программы, её так и называют «статья для рынка труда» (Job Market Paper) и ты ездишь по университетам и пытаешься ею заинтересовать. Если твои статьи нравятся, ты вполне можешь претендовать на место на кафедре.

Для тебя преподавание – это приятный бонус к исследованиям? Встречал ли людей, которые профессионально занимаются преподаванием в университетах, или всегда на первом месте наука?

Мотивация разная, но я часто сталкивался с отсутствием у коллег желания учить и инвестировать свой временной ресурс. Для большинства людей преподавание – это дополнительная работа. Это нагрузка. Ты просто крадешь время у себя, время, которое ты мог бы потратить, чтобы идти к своей цели – написанию научных статей. Но преподавать все равно приходится, потому что это главный источник дохода для университета.

А как же великое, доброе, светлое?

Не-не, это несуществующие вещи. Честно говоря, я такого не встречал. Хотя опять же люди разные. Если бы мы хотели создать модель, которая генерирует эти исходы, я бы сказал, что это действие с отрицательной полезностью (disutility). Люди не хотят этим заниматься. Но хотя, конечно, это всегда зависит от человека. Я видел людей, который учат нехотя, но видел и фанатов этого дела. Я честно говоря сам еще для себя не решил нравится мне или нет. Экономисты, кстати, при моделировании функций предпочтения инкорпорируют в нее такое свойство как «любовь к разнообразию» (love for variety). Некоторые классы функций имеют очень сильные свойства любви к разнообразию. К чему я это? Со временем и статью писать скучно становится и хочется поболтать, поучить кого-нибудь жизни. Надо все чередовать – это ближайший путь к точке блаженства (bliss point). Я сейчас ничего пошлого не сказал, это термин такой.

Это, на твой взгляд, нормально? В мире, где цена высшего образования настолько велика?

Ты сам препоавал? Там есть такая тема, что ты думаешь, что придешь, будешь рассказывать студентам, и им будет интересно. А им вообще ничего неинтересно! Они такие же как ты, они все оптимизируют. Большинство из них зарабатывают баллы: им просто нужны оценки. Точно так же, как и ты зарабатываешь зарплату и набираешь опыт, они получают оценки. И грубо говоря, они не сделают лишнего. Они не спросят лишнего. Вначале ты приходишь и думаешь: «я вам поведаю истину мира», а потом понимаешь, что в аудитории сидят такие же как и ты оппортунисты, которые просто делают домашнюю работу по английскому на парах.

Эта модель оптимальна, на твой взгляд? Сейчас я вижу новый тренд: люди все более осознанно идут в учебные заведения и идут за знаниями.

Очень важно создавать среду. Если ты говоришь о выборе предметов, разумеется, такая возможность должна быть. Если люди сделали выбор самостоятельно, то они будут более мотивированы. Лишь по этой причине можно ожидать, что они будут более вовлечены. Кроме того, нужно естественным образом не утомлять студентов во время занятий. В Австралии очень распространены быстрые тесты по ходу занятия, чтобы отследить, насколько студенты усвоили материал.  Прямо как на coursera.org. Я думаю, что благодаря современным технологиям можно добиться очень высокого уровня вовлеченности студентов в учебный процесс. Те люди, которые приходят на MBA и платят за это деньги, естественным образом больше вовлечены. Но с другой стороны, если мы посмотрим на первокурсников, которым по 15-16 лет, то мы видим, что они гораздо более заинтересованы и вовлечены, чем на старших курсах. В начале обучения они более мотивированы, а потом степень их оппортунистичности нарастает. Они меньше делают, меньше задают вопросов, все чаще по возможности пропускают лекции.

У преподавателей же в университете две вещи конкурируют за их время. С одной стороны, ты должен делать исследования, от которых зависит твоя зарплата. С другой стороны, ты должен читать лекции. Но если тебе студенты ставят низкий рейтинг, тебе бьют по голове.  Тебе сложно балансировать между двумя этими вещами. Очень часто многие преподаватели предпочитают давать легкие задания или рассказывать меньше, значительно упрощая свой предмет, чтобы иметь лучший рейтинг. Это тоже не очень хорошо.

Полезно ли было для тебя обучение в ВШМ СПбГУ?

ВШМ – это замечательное место. Самое главное, что она тебе дает – это крылья, ощущение, что многие вещи реальны. Это особое чувство. Когда ты приходишь в ВШМ, где они все время произносят какие-то иностранные слова, какие-то Дракеры, Портеры… со временем ты этим заражаешься. ВШМ дает амбиции. И понимание того, что в принципе все возможно.

Поделись своими воспоминаниями, связанными с учебой в нашей бизнес-школе?

Мы были студентами первой бакалаврской программы в ВШМ, нас учили Валерий Катькало (Валерий Катькало – декан ВШМ СПбГУ (1997–2010 гг.), проректор СПбГУ по направлению «Менеджмент» (2010-2012 гг.)), Дмитрий Волков (Дмитрий Волков – заведующий кафедрой финансов ВШМ СПбГУ (2003–2008 гг.)), те люди, которые считаются настоящими профессионалами своего дела. Нам давали очень много. ВШМ дает тебе знания, которые помогают объяснить мир и бизнес, в частности. Залезть в голову к людям, которые принимают решения, влияющие на судьбы миллионов.

Когда ты учишься в ВШМ, ты являешься профессиональным «запоминателем пунктиков». Ты приходишь на лекцию, где тебе дают 50 слайдов, в каждом слайде 30 пунктиков, и к экзамену ты просто должен выучить все эти 1500 пунктиков.

Над чем ты сейчас работаешь?

Собственно, в контексте нашей дискуссии про образование – одна из моих статей как раз была посвящена именно ему. Это очень хороший пример микроэконометрики. Мы пытаемся объяснить, какую премию к зарплате дает наличие высшего образования – классический вопрос в экономике труда. В России, начиная с 2000, премия снижается. Это статистический факт. Почему это происходит вопрос очень любопытный.

Есть версия что дело в ЕГЭ. Дипломы стали получить люди, которые так и так бы имели меньшую зарплату, потому что у них менее благоприятные социально-экономические исходные данные.  Есть версия, что произошло расширение образование и по закону рынка цена выпускника упала. Моя теория, которую я излагаю в своей работе, это то что снижеине зарплат это на самом деле статистический казус вызванный тем, что был дефицит юристов и экономистов, но потом этот дефицит был закрыт. Я показываю, что огромную премию к зарплате получали вот эти две специальности.

Интересно, что, к примеру, в Америке обратный процесс.  Разница доходов в обществе (очень важный вопрос) объясняется разницей в образовании. Они пытались объяснить неравенство, и убедительным объяснением стало то, что это естественный процесс. Экономика страны усложняется, и люди с высшим образованием получают премию относительно рынка за имеющуюся у них квалификацию. Таких людей дефицит, поэтому размер «премии» растет. В России же ситуация может показаться обратной. Вообще в Росси другие проблемы важнее. У нас не работают базовые интитуты защиты права. Без них обсуждать что-то сложнее безмысленно.

Но сейчас у меня в разработке есть еще более интересные темы. И я очень надеюсь, что у меня получится убедительная эмпирическая часть и я смогу двигаться к теории. Стратегию по идентификации я обсуждал с научными сотрудниками Институтом проблем правоприменения при Европейском университете Санкт-Петербурга, они даже приглашали меня провести у них коротких семинар по поводу этого исследования. Ребята говорят, что-то что я пытаюсь сделать может сработать и я сейчас объединяю информацию от Верховного Суда России, Прокуратуры и Росстата, чтобы это все провернуть. В общем, идея про терроризм, точнее борьба и ним, а еще точнее злоупотребление при борьбе с ним.

Если посмотреть объективно, то среднее количество смертей в год за период 1970-2015, примерно 180 с не очень широким доверительным интервалом. Половина этой цифра приходиться на Ближнем Востоке, где терроризм слабо отличим от обычного политического процесса. В действительности, от язвы умирает больше людей. Но что при этом происходит? Люди так напуганы, что без всяких публичных обсуждений позволяют создавать секретные службы, действующие без надзора, с огромными бюджетами и почти неограниченными полномочиями. Хотя для борьбы с раком такие ресурсы не выделяются и войны точно никто не начинает. Тут не надо заниматься теорией игр всю жизнь, чтобы понят, что есть большое поле для злоупотребления. Смотрел фильм «Сноуден», который недавно вышел? Это хороший пример. Он говорит, что терроризм – лишь предлог, чтобы эти службы могли беспрепятственно заниматься своими делами (примерно как господин Путин с напарниками пугает россиян Западом и делают что хотят).

Теория игр очень убедительно подскажет, что произойдет если дать кому-то много власти и не следить за ним. В этом в этом и будет мое исследование, показать, что принципал пишет закон, чтобы полиция боролась с терроризмом, а полиции проще делать что-нибудь более выгодное для себя, просто потому что может. И очень мне лично повезло, что я из удивительной страны России, где происходит кое-что уникальное по мировым масштабам. Знаете, недавно подростка посадили в тюрьму за пост в соцсети где написано “Я ненавижу.”? Что же это такое? В действительности это тот самый исход некой модели, которая генерирует эти случае. То есть сидят полицейские, которым надо самим получать зарплату или начальник, друг бизнесмены или губернатора, попросил кого-то утихомирить, и они пользуются безобразно написанным законом и безобразной системой судебной экспертизы. То есть для них люди это вещи, которые можно использовать, чтобы сделать себя счастливым. И в России такое правительсто которое считает это нормальным.

Речь тут, конечно, же не о России. Россия — это просто отличная иллюстрация, того, что может произойти плохого если продолжать расширять полномочия секретных служб. Почему в России до такого дошло это вопрос интересный сам по себе и я об много пишу, но для моей статьи это не центральный вопрос, для меня это лишь уникальная возможность статистически зафиксировать систематическое злоупотребление контртеррористических отделов полиции. Кстати говоря ребята из Институтом проблем правоприменения занимаются эти профессионально и делают невероятно важную для страны работу. Всем советую почитать что они публикуют у себя на сайте.

Предположим, ты проведешь это исследование, но как его можно будет применить в реальной жизни?

Не знаю. Это просто прикольная история! На эту тему меня вдохновила одна интересная статья. В Колумбии был избран президент, который пообещал положить конец гражданской войне в стране к концу своего президентского срока. Что он сделал? Он начал раздавать армейским чинам премии и отпуска за дополнительно убитых повстанцев. Понимаешь, что начало происходить? Они начали убивать обычных фермеров, надевать им армейские сапоги, причем часто путая правый с левым, спешили. Модель говорит, что так будет происходит всегда при подобных вводных. Обстоятельства так сошлись в Колумбии, что мы смогли увидеть подтверждение этому самому феномену в реальной жизни. Эмпирика говорит, что там, где больше полковников, там больше и смертей невинных фермеров.

Экономисты скажут, что эта вещь общетеоретическая, значит она всегда будет существовать.  И всегда будет генерироваться такой исход. Но иногда нам везет, иногда обстоятельства так складываются, что мы можем зафиксировать статистически этот социальный феномен. То же самое с неправомерным антиэкстремизмом в России. Это то, что мне нравится, просто пару примеров. Но там еще много всего, каждая научная статья – это история, а я коллекционер этих историй. О них можно говорить бесконечно долго. И это невероятно увлекательно.

И последней вопрос. Знаю, что в ВШМ ты же читал макроэкономику и сейчас вроде сугубо микроэкономикой занимаешься как это так вышло? И чтобы ты сказал про экономический рост в России коротко? (нет в опубликованной версии)

Это интересное замечание, я действительно долго видел себя макроэкономистом, но потом переключится на микроэкономику. Как вот вышло. Я очень хорошо знаю макроэкономику и преподавал её в ВШМ и в Йорке и первокурсникам и мастерам. В каком-то смысле из-за кризиса последнего макроэкономика себя дискредитировала, макроэкономисты долго видели себя инженерами, заимствовали математику от них, моделировали макроэкономические системы, а потом оказалось, что что-то они не то моделировали; не учитывали важных жизненных нюансов. Я думаю так, в микроэкономике можно рассказать истории поинтереснее, и они будут понятны более широкой аудитории. Поэтому я сейчас занимаюсь микроэкономикой.

Я очень долго пытался понять для себя почему в России не происходит накопление богатства. Почему люди бедные. Первые годы своей научной деятельности я посвятил поиску ответов именно на эти вопросы. Мне казалось, что, если я пойму все вот эти понятия такие как процентная ставка, ВВП, инвестиции я смогу докопаться и понять что является причиной роста или снижения ВВП. Но в действительности, продолжая идею о логике другого уровня, оказалось, что истинное ответы на вопросы почему какие-то страны богатые, ф другие бедные лежит далеко за плоскостью макроэкономики. За плоскостью так называемых монетарных величины в макроэкономике. Монетарные величина лишь проявления некоторых поведенческих особенностей. То есть ответы про макро находятся в микро.

Про рост, если коротко говорить, то надо сначала протянуть верные причинное следственные связи. Нельзя говорить, что в России не растет ВВП, потому что нет инвестиций. Это тавтология. Тут нет выхода на новый логику более высоко порядка. Уместна та же аналогия про врача, который видит анализ крови, задает еще пару вопросов и говорит диагноз. Также в экономике. Отсутствие роста экономики — это исход, симптом, болезнь совсем в другом. Проблема в общественных институтах. Для людей законы неписанные такие же важные как писанные, а то и более важнее.

Писанные законы закрепляют сложившуюся практику или то, что в обществе считается приемлемым. Неформальные общественные институты формируются веками и очень устойчивы, это такие неписанные законы между людьми. Пару пример устойчивости институтов — это крепостное право, которое попозже стало системой прописки и сегодня существует в виде системы регистрации. Другой пример — это борьба с инакомыслием, «враги народов», которые сегодня называются «либералами». Эти пару примеров иллюстрируют неформальные нормы в обществе, которые в каждый свой век с поправкой на технологии находят себя в новом воплощении. Только сегодня чтобы одна часть населения могла грабить другую используется не грубое крепостное право, а другие схемы. Нет необходимости физически расправляться с врагами народа, чтобы обеспечивать раскол в обществе и устойчивость властвующих, потому что технологии позволяют и так эффективно контролировать общественное мнение.

Вообще на эту тему очень много чего написано, исключительно хорошо написанной и доступной книгой является «Почему одни страны богатые, а другие бедные» (Why Nations Fail: The Origins of Power, Prosperity, and Poverty). Как это изменить и стать побогаче? Профессионалы институциональной экономике скажут, что это очень сложная работа, нужны очень сильные исторические события, чтобы изменить институты. И этой очень редко происходит. Мы знаем буквально единичные примеры, когда страна из развивающейся стало развитой. К примеру, только события Черной смерть позволили Англии начать по человечки относиться к крестьянам, что в свою очередь создала предпосылки к накоплению богатство. Я помню очень удивился, когда первокурсники в ВШМ как-то сказали, что в Америке «люди приветливее», потому что они богатые. В действительности причинно-следственная связь обратная, они приветливее, потому имели шанс на высвобождение естественных созидательных склонностей людей и в итоге шанс на экономический рост.

В целом, если кратко, чтобы дать стране шанс на рост надо сначала избавиться от злодея, который обманом называют себя президентом и вернуть выборы. Тогда есть шанс. Нам очень нужны реформы полиции, системы правосудия и роспуск ФСБ, но эти реформы только сопоставимы с демократически избранными политиками. Текущие политики удерживают власть разлагая эти интитуты и от этого страдает экономический рост.

Беседовал Александр Байзаров